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2D Super-Resolution Metrology Based on Superoscillatory
Light

Yu Wang,* Eng Aik Chan, Carolina Rendón-Barraza, Yijie Shen, Eric Plum,
and Jun-Yu Ou*

Progress in the semiconductor industry relies on the development of
increasingly compact devices consisting of complex geometries made from
diverse materials. Precise, label-free, and real-time metrology is needed for the
characterization and quality control of such structures in both scientific
research and industry. However, optical metrology of 2D sub-wavelength
structures with nanometer resolution remains a major challenge. Here, a
single-shot and label-free optical metrology approach that determines 2D
features of nanostructures, is introduced. Accurate experimental
measurements with a random statistical error of 18 nm (𝝀/27) are
demonstrated, while simulations suggest that 6 nm (𝝀/81) may be possible.
This is far beyond the diffraction limit that affects conventional metrology.
This metrology employs neural network processing of images of the 2D
nano-objects interacting with a phase singularity of the incident topologically
structured superoscillatory light. A comparison between conventional and
topologically structured illuminations shows that the presence of a singularity
with a giant phase gradient substantially improves the retrieval of object
information in such an optical metrology. This non-invasive nano-metrology
opens a range of application opportunities for smart manufacturing
processes, quality control, and advanced materials characterization.
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1. Introduction

Optical microscopy and metrology have
evolved into versatile foundational tools
for addressing challenges in fundamental
research, manufacturing, and engineering
applications, such as quality control and
precision manufacturing, biostructure
imaging, and medical tests.[1] Advances
in the semiconductor industry yield in-
creasingly miniaturized and integrated
logic and memory devices. Their in-
creasing complexity demands rapid and
accurate 2D metrology for quality con-
trol and characterization.[2] Over recent
decades, various metrology techniques
including spectroscopic ellipsometry and
reflectometry[3,4] as well as scanning elec-
tron microscopy (SEM) and transmission
electron microscopy (TEM)[5] have been
extensively exploited to boost process effi-
ciency and expedite yield ramp-up. While
SEM and TEM are employed for routine
2D/3D morphologic characterization with
high resolution in the semiconductor in-
dustry, specimens subjected to high-energy

electrons may experience irreversible radiation damage.[5–7] The
spectroscopic inspection methods are non-destructive and can
determine the thickness or roughness of films.[8,9] However,
these can only offer high resolution in one dimension and
conventional ellipsometry and reflectometry struggle with both
edge and corner areas in unit blocks due to their relatively large
illuminating spot size. Fluorescent microscopies consistently
achieve super-resolution down to a few tens of nanometers and
have become important tools in biomedical and semiconductor
research,[10–14] however, the necessity of introducing fluorescent
labeling and follow-up processing prevents their application
in real-time and in vivo imaging and metrology.[15] Recently
it has been demonstrated that a label-free and non-contact
optical nanometrology of 1D objects with super-resolution
can be accomplished by analyzing the scattering patterns of
objects with artificial intelligence.[16,17] Considering that the
geometry of semiconductor and biological structures is usu-
ally more complex, it is desirable to develop label-free and
non-destructive super-resolution metrological technologies for
higher-dimensional nanoscale objects and structures.

In optical metrology, the geometry of a scatterer can be recon-
structed using the Kirchhoff–Helmholtz integral equation if the
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intensity and phase of the scattered field are known on a closed
surface surrounding the object.[18] Typically, the availability of
intensity information only for a limited solid angle and lack of
phase information make the object reconstruction a challenging
ill-posed inverse problem.[19] Very recently, machine learning,
which bypasses the obstacle of the ill-posed inverse problem by
establishing a pseudo-inverse mapping model through learn-
ing abundant training data, has been employed successfully
in optical imaging and metrology, including denoising, sub-
pixel refinement, counting and mapping, and 3D geometry
recovery.[1,20–24] A fundamental aspect of machine learning in
optical metrology, as a data-driven technology, is to find the
mapping relation between the actual parameters of a class of
objects and the corresponding measured data. A stronger and
thus more noticeable correlation between measurable data and
object parameters enables the model to make more precise
predictions. Recent theoretical and experimental results have
revealed that topologically structured superoscillatory illumi-
nation fields yield increased sensitivity in optical dimensional
and positional metrology, which suggests that they are favorable
for retrieving object information from scattering patterns by
machine learning.[16,25–27] Here, we demonstrate a single-shot
optical metrology approach that accurately retrieves 2D features
of sub-wavelength objects with an experimental random statis-
tical error of 18 nm (𝜆/27) while simulations suggest that 6 nm
(𝜆/81) may be possible. This is far beyond the Abbe–Rayleigh
diffraction limit of conventional microscopy and achieved by
deep learning analysis of images of objects illuminated by a
phase singularity. We argue that such label-free and non-invasive
metrology can be applied in non-destructive testing, biomedical
imaging, and characterization of semiconductor chips.

2. Principle and Experimental Setup

Precisely controlled multiple-wave interference can generate
a superoscillatory field with tiny and sub-diffraction-limited
“hotspots” in free space.[28] Surrounding a superoscillatory
hotspot, there are large phase gradients (also known as giant local
wavevectors) and large gradients of amplitude, as well as phase
singularities where the phase changes from -𝜋 to 𝜋 over dis-
tances that are a tiny fraction of the wavelength[29–31] while such
small optical features are absent in conventional Gaussian beams
and plane waves. Recent experiments have empirically indicated
that scattering patterns exhibit enhanced sensitivity to obstacles
placed at positions with high amplitude gradients and/or phase
gradients of the illuminating field,[16,25,27] and this conclusion
has been supported by diffraction and information theory.[26,28]

Such enhanced sensitivity to the interaction of tiny optical fea-
tures with nanoscale objects may also be anticipated for imaging
of the objects, which suggests that superoscillatory illumination
can improve the resolution of AI-assisted optical microscopy and
metrology.

The field distribution in the plane of the object (ellipse) may
be described as EObj (x,y) = E0 (x,y)g(x, y), where incident light
E0 (x,y) = A0 (x,y)exp (i𝜑0(x,y)) is defined by an amplitude dis-
tribution A0(x,y) and a phase distribution 𝜑0(x,y), while g(x, y)
represents the aperture function of the object. The field distribu-
tion on the camera is then given by the convolution (indicated
by *) with the amplitude point spread function PSF(x, y) of the

imaging system, ECam (x,y) = EObj (x,y)*PSF(x, y). Therefore, the
intensity distribution detected by the camera is

ICam (x, y) = ||ECam (x, y)||2

= |||
[
A0 (x, y) exp

(
i𝜑0 (x, y)

)
g (x, y)

]
∗ PSF (x, y)|||

2
(1)

As a simple example of a small perturbation, consider a small
shift of the object. For an incident plane wave, where A0 and 𝜑0
reduce to constants, the small shift of the object merely results
in a small shift of the image on the camera, which would be in-
distinguishable from a small movement of the camera. In con-
trast, structured illumination (i.e., non-zero gradients of incident
amplitude and/or phase) will result in more complex changes
of the intensity distribution on the camera, which can be more
pronounced for more rapidly varying incident light distributions,
providing more object-dependent features in detected images
that machine learning can pick up on. Therefore, giant ampli-
tude gradients and phase gradients occurring at singularities of
topologically structured superoscillatory illumination of an object
can be expected to contribute significantly to features of detected
images that provide information about the object and may enable
super-resolution in AI-assisted imaging and metrology.

Superoscillatory fields can be produced either by spatial light
modulators[16,28,32] or a static superoscillatory lens.[33,34] As illus-
trated by Figure S1 and Note S1 (Supporting Information), we
employ the former approach that allows the focal hotspot to be
formed at the focus of a microscope objective, offering a few hun-
dred microns working distance, which is advantageous for scan-
ning and measuring objects in optical microscopy systems. Su-
peroscillatory light propagating along the z-axis is formed from
a y-polarized Gaussian beam with wavelength 𝜆 = 488 nm via a
pair of spatial light modulators, one for amplitude modulation
and the other for phase. The generated superoscillatory light has
a central intensity maximum, the hotspot, flanked by phase sin-
gularities that are tiny zones with high phase gradients, which
are indicated by white circles in Figure 1a. We utilize one phase
singularity to interact with the sub-wavelength elliptical aperture
to measure its 2D size. This phase singularity exists in the en-
ergy dark zone between the hotspot and the ring-shaped higher-
intensity halo and the hotspot is characterized by a field of view of
𝜆 and a full width at half maximum of 0.42 𝜆. The ground truths,
the widths and lengths of elliptical holes, were established by a
priori SEM measurements, and one example elliptical hole with
width = 9𝜆/61 and length = 171𝜆/244 is shown in Figure 1b.
We fabricated 200 sub-wavelength elliptical holes with random
sizes (i.e., widths in the 0.1 𝜆 – 0.82 𝜆 range and lengths in the
0.2 𝜆 – 0.92 𝜆 range) by focused ion beam milling of an opaque
chromium film with 80 nm thickness. The sample with 200 el-
liptical holes is translated by a piezo stage, illuminated by super-
oscillatory light, and imaged by a 16-bit camera through a trans-
mission microscope with a 100× objective (NA = 0.9) so that
the singularity of the incident superoscillatory field is focused on
the object plane and the image of the object plane is collected
by the camera. In experimental measurements, the alignment of
elliptical apertures with the phase singularity of the illuminat-
ing superoscillatory field is vital to achieve a low statistical error
with high measurement accuracy. We first find the energy dark
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Figure 1. 2D optical metrology via imaging with topologically structured superoscillatory light and AI analysis. a) The intensity (|Ey|2) and phase (𝜑(Ey))
profiles of the topologically structured superoscillatory light in the x-z plane, where phase singularities are indicated by white circles. A measured elliptical
aperture, represented by the rectangle, interacts with one phase singularity near the hotspot. b) SEM of a measured sub-wavelength elliptical hole and
the intensity pattern (|Ey|2) of the superoscillatory hotspot in the x-y plane. c) Flow diagram of the 2D optical metrology, where the superoscillatory light
illuminates the measurands (different elliptical holes), and a neural network learns to retrieve the widths and lengths of elliptical apertures from their
images.

area between the hotspot and the halo and mark the left phase
singularity that will be used. Then we move the center of the el-
liptical aperture to align with the marked location of the phase
singularity, as demonstrated in Figure 1b, Figure S2 and Note
S2 (Supporting Information). To enable such optical metrology
to measure unknown 2D sizes of sub-wavelength elliptical holes
via machine learning, we created a dataset including 200 single-
shot images (600*600 pixels, 7.56 μm field of view) of elliptical
apertures with different sizes and randomly selected 80% as the
training dataset (160 images) and 10% for validation (20 images),
which were fed to the neural network for learning; subsequently,
we tested the trained network’s ability to retrieve the dimensions
of the remaining elliptical apertures from the unseen 10% of the
single-shot images (20 images) as illustrated in Figure 1c.

A 34-layer residual network architecture as in reference[35]

is employed to retrieve 2D sizes of sub-wavelength elliptical
holes. It was chosen due to its ability to efficiently learn map-
pings in imaging classification, object detection, and segmenta-
tion tasks.[36–40] The initial convolutional layer consists of a 7 by
7 kernel with 64 output channels, succeeded by a 3 by 3 max-
pooling layer. It is organized into four stages, each comprising
a distinct number of residual blocks: 3, 4, 6, and 3 blocks, in
sequence. Within these stages, each block comprises multiple
residual units, and each unit is composed of 3 convolutional lay-
ers. These layers conclude with an identity connection (shortcut
connection) that bypasses one or more layers, aiding in informa-
tion preservation and mitigating the vanishing gradient problem.
The rectified linear unit (ReLU) serves as the activation func-
tion throughout the network, except for the final operation within
each block. Features learned in the ultimate residual layer are ex-
tracted via an average pooling layer, followed by a 512 fully con-

nected layer and a 2-output neuron layer. The output neurons cor-
respond to the width and length of the measurand, respectively.
The network undergoes training using the Adam stochastic opti-
mization method,[41] optimizing the neural network by minimiz-
ing the mean absolute error loss function.

3. Results and Discussion

Figure 2 illustrates the retrieval of dimensions of elliptical holes
from single-shot images recorded experimentally with phase sin-
gularity illumination using superoscillatory light. E.g., Figure 2a
shows the image recorded for an elliptical hole with width =
9𝜆/61 and length = 171𝜆/244, where the phase singularity to the
left of the hotspot in the superoscillatory field illuminates the el-
liptical aperture. After training the network with images of 160
of the 200 elliptical holes and their dimensions, it has the abil-
ity to retrieve the widths and lengths of unknown elliptical holes
from unseen images, as shown in Figure 2b,c. These two pan-
els show the retrieved and true widths and lengths from the test
dataset (20 elliptical apertures with different dimensions) where
each data point is the average of the answers given by 50 trained
networks, which ensures stability and reduces the impact of out-
liers. The diagonal dotted line denotes a perfect mapping of pre-
dictions to actual dimensions. We characterize the performance
of such optical metrology in terms of the standard deviation 𝜎

between predictions and actual dimensions, 𝜎 =
√∑n

i=1 (Xi−XT,i)
2

n
where Xi denotes the average of 50 answers from the neural net-
works and XT ,i is the true value of width or length, and n refers
to the number of measurements (n = 20). As our experimental
errors (Figure 2b,c) are dominated by a statistical spread around
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Figure 2. 2D size retrieval of sub-wavelength elliptical apertures based on experimental topological imaging. a) Image of an elliptical hole with width =
9𝜆/61 and length = 171𝜆/244 illuminated by the phase singularity to the left of the hotspot in the superoscillatory field. b,c) Retrieved b) widths (circles)
and c) lengths (squares) of elliptical apertures versus their actual sizes, where the ideal cases are marked by diagonal dashed lines.

the true dimensions, our measurements may be considered accu-
rate and 𝜎 is, therefore, a measure of the random statistical error,
which is of order 18 nm (𝜆/27) for the width and 36.6 nm (𝜆/13)
for the length of the elliptical holes. This achieved nanometer
scale statistical error indicates the potential of the technique for
the metrology of sub-wavelength scale objects. It should further
be noted that such measurements are fast, single-shot without
any need for scanning or object reconstruction, and therefore the
measurement time in such an optical metrology can be as short
as the image exposure time of the camera. Here, this is ≈100 ms,
and it can be reduced further by the use of a faster, low-noise cam-
era (e.g., cooled) and brighter illumination (e.g., increased laser
power).

To explore the potential lower statistical error in such optical
metrology, we conduct numerical modeling under the same topo-
logical illumination condition but without any environmental in-
stabilities, otherwise mirroring the experiments. We also acquire
simulated images (e.g., Figure 3a) of 200 elliptical apertures with
the same sizes in the experiments and subsequently split them
at random as training (160 images, 80%), validation (20 images,
10%), and testing (20 images, 10%) datasets for the same neural
network processing. As shown in Figure 3b,c, the dimensions re-
trieved from the simulated images are accurate with significantly
smaller statistical errors than those in the experiment. The stan-
dard deviations are 6 nm (𝜆/81) and 9.5 nm (𝜆/51) for width and
length, respectively. This suggests that considerably reduced sta-

tistical errors approaching 𝜆/81 may be achievable in such an op-
tical metrology by minimizing fluctuations, e.g., associated with
the alignment accuracy (Figure S3 and Note S3, Supporting In-
formation), positional stability of the piezo stage (Figure S4 and
Note S4, Supporting Information), mechanical stability of the op-
tical setup and stability of the laser (wavelength, intensity, and
polarization), which are affected by environmental temperature
variation and vibrations.

We note that the width is retrieved with smaller statistical er-
rors than the length of the elliptical holes in both experiments
and simulations and suspect that this may be related to different
phase (and amplitude) gradients of the incident field along these
orthogonal directions.

It is expected that the retrieval of the elliptical hole dimen-
sions depends on the light field used for illumination. To in-
vestigate this, we also execute simulations and the neural net-
work processing for plane wave, tightly-focused Gaussian (with
the full width at half maximum = 0.57 𝜆), and superoscillatory
(SO) hotspot illumination of the same 200 elliptical holes, where
all four types of incident light have the same wavelength and are
shown in Figure 4a–d. The measurement errors |Xi − XT,i| for
width and length of the elliptical holes (where Xi denotes the av-
erage of 50 answers from the neural networks and XT ,i is the
true value of width or length) are shown for all four illumina-
tion conditions in Figure 4e,f. The distribution of errors is rep-
resented by box plots, where the median lines provide insight

Figure 3. 2D size retrieval of sub-wavelength elliptical apertures based on simulated topological imaging. a) Simulated image of an elliptical hole (with
the same size in Figure 2a) overlapping with a phase singularity of the superoscillatory light. b,c) Retrieved b) widths (circles) and c) lengths (squares)
of elliptical apertures versus their actual sizes, where the ideal cases are marked by diagonal dashed lines and the neural network learns and predicts
using simulated images.
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Figure 4. A comparison of measurement errors under different illumination conditions. a–d) Illumination diagrams of an elliptical hole under the plane
wave, tightly-focused Gaussian, superoscillatory (SO) hotspot, and SO singularity illumination, respectively. e,f) A comparison of measurement errors
under such different illumination conditions according to simulations.

into the typical measurement errors, which are 0.026 𝜆, 0.021
𝜆, 0.021 𝜆, and 0.010 𝜆 for measured widths under plane wave,
tightly-focused Gaussian, SO hotspot, and SO singularity illumi-
nations, as shown in Figure 4e. Their interquartile ranges (IQRs)
are 0.014 𝜆, 0.010 𝜆, 0.017 𝜆, and 0.012 𝜆, respectively. The me-
dians for the measured lengths are 0.020 𝜆, 0.018 𝜆, 0.015 𝜆, and
0.011 𝜆, with IQRs of 0.028 𝜆, 0.014 𝜆, 0.015 𝜆, and 0.012 𝜆 un-
der these four illumination conditions, respectively, as shown in
Figure 4f. Both the median and the IQR indicate smaller mea-
surement errors with superoscillatory singularity illumination,
as compared to plane wave, tightly-focused Gaussian, and su-
peroscillatory hotspot illuminations. This indicates that super-
oscillatory singularity illumination with its giant phase gradients
contributes to precise machine-learning-based retrieval of nano-
object dimensions from images.

While we have demonstrated the retrieval of two object param-
eters (width and length) of simple objects (elliptical holes), we
anticipate that our metrology technique can be applied to more
complex objects characterized by more object parameters, pro-
vided that the size of the training dataset is increased appropri-
ately.

4. Conclusion

In summary, we have demonstrated both numerically and exper-
imentally accurate 2D nanometrology with deep sub-wavelength
statistical errors which uses a neural network to retrieve the di-
mensions of a 2D sub-wavelength object from its image recorded
with topological illumination. This technique can characterize
nano-objects within milliseconds, i.e., within the time it takes to
record a single-shot image with a camera. Metrology accuracy and

statistical errors surpassing the Abbe–Rayleigh diffraction limit
in conventional microscopy dozens of times have been demon-
strated here on a system allowing for the collection of physical
training data for the neural network. More importantly, the tech-
nique does not use any fluorescent labeling, which avoids con-
tamination and photo-damage effects and broadens its potential
in the engineering and biomedical fields, e.g., smart manufac-
ture and quality control in the semiconductor industry and char-
acterization of small structures in thin biomedical specimens.
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the author.
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