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Abstract: Topologically structured light contains deeply subwavelength features, such as phase
singularities, and the scattering of such light can therefore be sensitive to the geometry or
movement of scattering objects at such scales. Indeed, it has been shown recently that single-
shot optical measurements can yield positional precision better than 100 pm (less than one
five-thousandth of the wavelength λ) via a deep-learning-enabled analysis of scattering patterns.
Measurement performance, and the extent to which it can be sustained, are constrained by the
quality and depth of neural network training data and the stability of the experimental apparatus.
Here, we show that a neural network can be trained through exposure to an extended envelope
of instrumental/ambient noise conditions to robustly quantify picometric displacements of a
target against orders-of-magnitude larger background fluctuations, to maintain precision and
accuracy of 100–150 pm in optical measurements (at λ= 488 nm) of nanowire positional change.
This capability opens up a range of application opportunities, for example in the optical study of
nanostructural dynamics, stiction, material fatigue, and phase transitions.
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1. Introduction

In a range of non-contact, label-free optical measurement and imaging techniques, machine
learning has emerged as a powerful tool for retrieving object information from far-field scattering
patterns, through its aptitude for effectively solving the inverse scattering problem – i.e. to
determine characteristics of an unknown scatterer from measurements of a scattered light
field - an inverse problem that can be reduced to the Fredholm integral equation [1–3]. For
example, it has been shown that a trained neural network can retrieve positional and dimensional
characteristics of sub-wavelength apertures under plane wave illumination from their transmission
scattering/diffraction patterns with single-shot precision down to λ/130 (where λ is the wavelength
of light) [4,5]; and more recently that with a combination of topologically structured illumination
– an incident light field containing deeply subwavelength features, such as phase singularities [6]
– and ‘in-situ’ neural network training data that is perfectly congruent with the object of study,
picometric precision down to λ/5300 can be achieved in single-shot localization measurements
of the position of a nanowire [7].

However, in any optical measurement or imaging application, there are constraints placed on
performance by the stability of the instrumental platform. Even a robust optical microscope in a
temperature-controlled laboratory environment will be subject to short-term random fluctuations
and long-term drift at nano- to micrometric length scales over time scales of minutes to hours [8],
for example through ambient acoustic noise or differential thermal expansion of components
(especially those intended to provide motion, e.g. sample stages, objective turrets). The power,
wavelength and polarization of a laser illumination source may likewise be subject to fluctuations
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and drift over similar time scales. In systems dependent on machine learning, these noise
contributions prevent generalization or application to ‘out-of-distribution’ data - meaning data
containing artefacts and noise features different from, or outside the range of those encountered
during training. Training data diversity is essential to addressing this limitation [9,10]. Here,
we show how increased diversity, in the form of just a few iterative training cycles, each subject
to random time-dependent noise, can enable a neural network to continue delivering nanowire
localization measurements with precision and accuracy orders of magnitude smaller than the
scale of concomitant instrumental fluctuations, for minutes beyond the training interval (over a
duration >109 times longer than the nanowire’s natural oscillation period), where previously
(Ref. [7]) it could only do so within the training interval. The neural network learns to identify
changes in transmission scattering patterns that relate specifically to changes in the position of
the nanowire relative to the rest of the sample, while disregarding other, extraneous changes in
the scattered light field.

2. Method

The experimental sample and microscopic apparatus for this study were as described in Ref [7]:
The sample comprises a 17 µm long, 200 nm wide nanowire, cut by focused ion beam milling
from a 50-nm-thick Si3N4 membrane coated with 65 nm of gold, with ∼100 nm gaps on either
side (Fig. 1). The lateral position of the nanowire, i.e. distance to the parallel edges of the
surrounding membrane, is electrostatically controlled over a few-nanometer range through the
application of a DC bias between the nanowire and one side of the adjacent membrane. The
sample was illuminated at the mid-point of the nanowire length, by a coherent (λ= 488 nm)
superoscillatory wavefront generated by a pair of spatial light modulators (see Supplement 1).
Transmission scattering patterns from an image plane at a distance ∼λ from the membrane were
recorded via an objective lens with a numerical aperture of 0.9 on a 16-bit image sensor. The
experiment was operated remotely to exclude perturbations due to the presence of people (as a
source of vibrational disturbance, heat, moisture, etc.) in the laboratory during data collection.

Fig. 1. Measuring picometric nanowire displacement in the presence of nano- to micrometric
noise. Topologically structured light scattered from the nanowire is imaged in transmission
via a high-numerical-aperture microscope objective (not shown). Lateral displacements
of the wire, controlled by application of a DC bias, V, between the wire and the adjacent
edge of the supporting membrane, are quantified via a deep-learning-enabled analysis of
single-shot scattering patterns. With sufficiently ‘diverse’ training, a neural network can
determine nanowire position with high precision and accuracy, even while the whole sample
and/or apparatus are subject to much larger positional fluctuations.

https://doi.org/10.6084/m9.figshare.26779423
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We recorded 19 consecutive sets of single-shot scattering patterns for 201 different nanowire
positions over a 360-4000 pm range of displacements from the zero-bias position. These were
recorded in a random sequence (repeated in each set) to exclude the possibility of neural network
learning from any correlation of position and time within a set, and the applied bias (displacement)
was reset to zero between recorded positions to eliminate any effect of stress history in the
nanowire. Scattering patterns were recorded with a 7.7λ× 7.7λ (301× 301 pixel) field of view
and an integration time of 100 ms. Each 201-image set was recorded over 2.5 min, giving a total
span of 47.5 min between the beginning of the first and the end of the last. The final set was
reserved for use as a delayed measurement set, i.e. never used in neural network training, except
to establish benchmarks for self-referenced training and testing within a single dataset (as per Ref.
[7]). Among all sets, the same randomly selected 80% of scattering patterns and corresponding
(known) nanowire displacement values were designated for use in neural network training and
validation. The other 20% are put aside as unseen images (nominally unknown displacements)
for testing (see Fig. 2). This ensures that, regardless to the ‘depth’ of training, i.e. the number
of repeated datasets used in training: (i) all neural networks are trained and validated on the
same 160 known nanowire displacements; and (ii) the assessment of metrological performance is
always based on the same set of scattering patterns from the measurement dataset, for nanowire
positions that have never been seen in training. (Further details of the neural network architecture
and training/validation procedure are given in Supplement 1).

Fig. 2. Neural network training for resilience to noise. Training data with a greater diversity
of background noise artefacts is accumulated by iterative repetition of the set of m randomly
sequenced nanowire displacement settings (x1, x2, x3, . . . , xm), where m= 201 in the present
case. The time interval between the end of the last dataset used in neural network training
and the subsequently recorded ‘measurement dataset’ is denoted ∆t. ‘Training depth’ N
refers to the number of datasets used in training, counting backwards from the closest in
time to the measurement dataset. Within each set, scattering patterns for the same randomly
selected 80% of nanowire positions (blue solid circles) are designated for use in training
and validation, while the other 20% of positions (red open circles) remain ‘unseen’ by the
network. (Training points within the ‘measurement’ dataset [blue open circles] are only
used for benchmarking against in-distribution measurement performance, i.e. training and
measurement within a single dataset.)

3. Results and discussion

Figure 3 shows how metrological performance deteriorates rapidly as the time interval ∆t between
the end of training data collection and measurement increases, while only single datasets are used
for training. We assess neural network performance in the retrieval of optically-measured nanowire
displacement in terms of: precision (Fig. 3(d)), which describes the reproducibility of a set of
nominally identical measurements (cf. the magnitude of the error bars in Figs. 3(a-c)) – calculated
as the average measurement standard deviation over the range of measured displacements; and

https://doi.org/10.6084/m9.figshare.26779423
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accuracy, which describes how close the mean value of a set of nominally identical measurements
is to the true value (cf. how close the datapoints are to the measured= actual displacement
diagonal in Figs. 3(a-c)) – evaluated as root mean square error over the range of measured
displacements. As one would expect, performance in time-delayed measurements is invariably
inferior to the self-referenced benchmark case (i.e. of testing on unseen images recorded within
the training interval). Precision and accuracy fluctuate wildly as a function of ∆t – randomly
better or worse from one point to the next as noise artefacts in each training image set are
randomly (as a consequence of short-timescale instrumental fluctuations) closer to or further from
those present during recording of the measurement dataset. In simple terms, useful measurement
capability is lost within <5 min, as illustrated in Fig. 3(c).

Fig. 3. Optical localization of nanowire position – performance as a function of time
delay between training and measurement. (a-c) Optically measured versus actual values of
nanowire displacement for neural networks trained: (a) in the self-referenced, benchmark
case of training and testing within a single dataset; (b, c) on single datasets with a delay ∆t [as
labelled] between the end of training and start of measurement dataset recording. Points and
error bars represent respectively the mean and standard deviation of ten measurements from
independently trained networks. Dashed lines above and below the solid ideal correlation
diagonals are plotted at ±10% relative error. (d) Measurement precision [average standard
deviation] and (e) accuracy [root mean square error] as a function of ∆t. In (d) and (e),
values for the self-referenced benchmark case are shown as dashed lines.

Figure 4 shows how increasing the diversity (or ‘depth’) of training can improve performance
in time-delayed measurements, to the extent of achieving comparable precision and slightly
better accuracy than the self-referenced benchmark at values of ∆t where measurements based on
single-dataset training fail. In this case, we fix ∆t at 5 minutes and vary the training depth N –
the number of prior datasets used in neural network training. Figures 4(a-c) show examples for
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training depths N = 1, 6, and 16 (Fig. 4(a), for N = 1 and ∆t= 5 min being identical to Fig. 3(c)).
As can be seen in Figs. 4(d,e) a training depth >6 is sufficient to recover precision ≤100 pm,
approaching the 72 pm single-dataset self-referenced benchmark, and accuracy slightly but
consistently better than the 214 pm self-referenced benchmark. This is not a simple manifestation
of the idea that the predictive power of a neural network increases with the size of its training
dataset [11]: In the present case, increasing N does not add any additional information to the
training dataset on the measurand (the nanowire position) – it adds repetitions of the same
160 known nanowire positions. This should not and does not improve measurement precision
(Fig. 4(d)). That it marginally improves measurement accuracy (Fig. 4(e)) is an interesting
consequence (discussed below) rather than the intended purpose of the iterative training regime,
which is to sustain performance over time after training. Through training on several scattering
patterns for each nanowire position, recorded over time (here, at intervals of ∼2.5 min) such
that each presents different random noise artefacts related to instrumental fluctuations on such
timescales, the neural network learns to distinguish between changes in the patterns which relate
specifically to movement of the nanowire relative to the nearby edges of the membrane (i.e.
electrostatically controlled variations in the gap sizes on either side of the wire) and other changes
in the scattering patterns, related to instrumental perturbations that may be orders of magnitude
larger.

Fig. 4. Optical localization of nanowire position – performance as a function of training
depth at ∆t= 5 min (a-c) Optically measured versus actual values of nanowire displacement
for neural networks trained over N [as labelled] datasets, with a fixed interval ∆t= 5 min
between the end of training and the start of measurement dataset recording. (d) Measurement
precision [average standard deviation] and (e) accuracy [root mean square error] as a function
of N.
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Fig. 5. Comparison of optical measurement performance as a function of training depth at
∆t= 5 min between nanowire positions unseen by neural networks during training [datapoints
as in Figs. 4(d,e)] and nominally known [previously-seen] positions used in training. (a)
Measurement precision [average standard deviation] and (b) accuracy [root mean square
error] as a function of N.

The same behavior – recovery of precision and accuracy to levels respectively just above
and just below the self-referenced benchmark at N> 6; with little or no further improvement in
performance for N > 8, is seen at ∆t= 10 min (see supplementary Fig. S2). This speaks to the
fact that in general, the depth of training required to maximize metrological performance and the
length of time over which performance can then be maintained will depend on the nature of the
measurement being made, and the nature, magnitude and characteristic timescale of instrumental
and ambient noise and/or drift, i.e. on the physical and environmental stability of the experiment.
In the present case (an optical microscope with a closed-loop piezoelectric sample stage, on a
vibration-isolated optical table), as few as six iterations of each nanowire position over a total
training period of ∼15 min. are sufficient for the neural network to map the parameter space of
noise subsequently encountered over at least another 12.5 min. (i.e. ∆t= 10 min. plus the 2.5
min duration of measurement dataset collection). Performance will be maintained for as long as
experimental conditions remain within the trained envelope of nanowire position and noise; it
will be lost (the neural network’s model will fail) at whatever point the apparatus exceed that
envelope, e.g. due to long-term drift of a given parameter with laboratory temperature over many
hours.

Ordinarily (Figs. 3, 4) neural networks are tested only on previously-unseen nanowire positions
(the red points within the measurement dataset, as illustrated in Fig. 2). However, it is informative
to compare measurement performance for previously-seen (i.e. in training and validation) versus
-unseen positions, both subject (in the time-delayed measurement dataset) to previously-unseen
noise. At ∆t= 5 min, there is no difference between results for these two cases (Fig. 5). This
indicates firstly that noise in the scattering patterns at ∆t= 5 min is sufficiently large that networks
with shallow (low-N) training cannot distinguish between nominally known and unknown
positions (i.e. all lie outside the envelope of trained noise parameter space). At high N, the
fact that precision (Fig. 5(a)) for previously-seen positions tends to a self-referenced benchmark
identical to that for previously-unseen positions (rather than a lower level, or even zero) indicates
that this is a limit imposed by experimental uncertainty, i.e. principally in knowledge and
reproducibility of actual displacement values. Accuracy (Fig. 5(b)) at high N, for both previously-
seen and -unseen positions, tends to the self-referenced benchmark for previously-seen positions,
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which surpasses the level for previously-unseen positions because it is derived from the data
specifically used to optimize accuracy (minimize error) as the singular objective of network
training and validation.

4. Conclusion

In summary, we have shown experimentally that picometrically precise single-shot optical
measurements enabled by machine learning can be made robust against instrumental fluctuations
at orders of magnitude larger scale. With suitably diverse (sufficient iterative depth of) in-situ
training, a neural network retrieving (sub)nanometric positional/dimensional information on an
object from scattering patterns can learn to distinguish meaningful changes in the patterns from
extraneous artefacts related to random instrumental noise. Precise and accurate measurements
can thus be maintained for some time beyond the training window – in the present case, for
at least 12.5 minutes after only six 2.5-min training data acquisition cycles. In the context of
studying the motion of nanoscale objects, this interval should be compared with the nanowire’s
∼1.6 MHz in-plane natural mechanical resonance frequency: it corresponds to >109 oscillation
periods. This sustained measurement capability opens up a range of interesting applications for
optical picometrology, for example in the study of nanostructural dynamics and the action of
forces and fields on nano-objects, in systems providing for a neural network to be trained under a
regime of controlled (quasi)static positioning, for subsequent observation of free or externally
driven motion.
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